Detailed bed topography and sediment load measurements for two stepdown flows in a laboratory flume

2021 
Abstract Streams and rivers, particularly smaller ones, often do not maintain steady flow rates for long enough to reach equilibrium conditions for sediment transport and bed topography. In particular, streams in small watersheds may be subject to rapidly changing hydrographs, and relict bedforms from previous high flows can cause further disequilibrium that complicates the prediction of sediment transport rates. In order to advance the understanding of how bedforms respond to rapid changes in flow rate, a series of flume experiments were performed where the flow was reduced rapidly from equilibrium conditions. Sediment transport rates and bed elevation data across the flume and over a 15-meter-long test section were collected during the experiments to allow detailed examination of evolving bedform dynamics. It was found that relict bedforms stopped moving completely after flow reductions, and the mode of sediment transport was shifted to small bedforms that arose rapidly over dune stoss sections throughout the test section. The changes in sediment transport with time as the sand bed adjusted to the new flow rate was found to agree with predictions based on the relations proposed in Wren et al. (2020). Wavelet analysis is used to visualize changes in length and amplitude scales during the bed transition process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []