Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors

2015 
Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm2 large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10–4 g/m2·day initially, and stabilized at ∼0.48 g/m2·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-pass...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    72
    Citations
    NaN
    KQI
    []