Tellurene Nanoflake-Based NO2 Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit.

2020 
Industrial production, environmental monitoring, and clinical medicine put forward urgent demands for high-performance gas sensors. Two-dimensional (2D) materials are regarded as promising gas-sensing materials owing to their large surface-to-volume ratio, high surface activity, and abundant surface-active sites. However, it is still challenging to achieve facilely prepared materials with high sensitivity, fast response, full recovery, and robustness in harsh environments for gas sensing. Here, a combination of experiments and density functional theory (DFT) calculations is performed to explore the application of tellurene in gas sensors. The prepared tellurene nanoflakes via facile liquid-phase exfoliation show an excellent response to NO2 (25 ppb, 201.8% and 150 ppb, 264.3%) and an ultralow theory detection limit (DL) of 0.214 ppb at room temperature, which is excellent compared to that of most reported 2D materials. Furthermore, tellurene sensors present a fast response (25 ppb, 83 s and 100 ppb, 26 s) and recovery (25 ppb, 458 s and 100 ppb, 290 s). The DFT calculations further clarify the reasons for enhanced electrical conductivity after NO2 adsorption because of the interfacial electron transfer from tellurene to NO2, revealing an underlying explanation for tellurene-based gas sensors. These results indicate that tellurene is eminently promising for detecting NO2 with superior sensitivity, favorable selectivity, an ultralow DL, fast response-recovery, and high stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    16
    Citations
    NaN
    KQI
    []