Activated nuclear factor kappa B and airway inflammation after smoke inhalation and burn injury in sheep.

2009 
In a recent study, we have shown a rapid inflammatory cell influx across the glandular epithelium and strong proinflammatory cytokine expression at 4 hours after inhalation injury. Studies have demonstrated a significant role of nuclear factor kappa B in proinflammatory cytokine gene transcription. This study examines the acute airway inflammatory response and immunohistochemical detection of p65, a marker of nuclear factor kappa B activation, in sheep after smoke inhalation and burn injury. Pulmonary tissue from uninjured sheep and sheep at 4, 8, 12, 24, and 48 hours after inhalation and burn injury was included in the study. Following immunostaining for p65 and myeloperoxidase, the cell types and the percentage of bronchial submucosal gland cells staining for p65 and the extent of myeloperoxidase stained neutrophils in the bronchial submucosa were determined. Results indicate absence of detection of P65 before 12 hours after injury. At 12 hours after injury, strong perinuclear staining for p65 was evident in bronchial gland epithelial cells, macrophages, and endothelial cells. Bronchial submucosal gland cells showed a significant increase in the percentage of cells stained for p65 compared with uninjured animals and earlier times after injury, P < .05. At 24 and 48 hours after injury, p65 expression was evident in the bronchiolar epithelium, Type II pneumocytes, macrophages, and endothelial cells. Quantitation of the neutrophil influx into the bronchial submucosa showed a significant increase compared with uninjured tissue at 24 and 48 hours after injury, P < .05. In conclusion, immunohistochemical detection of activated p65 preceded the overall inflammatory response measured in the lamina propria. However, detection of p65 did not correlate with a recent study showing rapid emigration of neutrophils at 4 hours postinjury. Together, these re- sults suggest that p65 immunostaining may identify cells that are activated to produce proinflammatory cytokines after injury; however, the immunoexpression may not adequately reflect the temporal activation of gene transcription that may occur with proinflammatory cytokine production with inhalation injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    18
    Citations
    NaN
    KQI
    []