Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation

2015 
Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoOx and NiOOH for the improved water oxidation activity. Compared to the CoOx loaded BiVO4 (CoOx/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoOx/BiVO4 photoanode triples the photocurrent density at 0.6 VRHE under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen ef...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    389
    Citations
    NaN
    KQI
    []