Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors

2019 
Abstract Recent trends have witnessed laser induced graphene (LIG) syntheses on various materials from synthetic polymers to natural precursors. Herein, porcine skin derived gelatin was used as a medium to modify the surface morphology and nanoparticle distribution of in situ synthesized Co3O4/LIG on polyimide (PI) film. By varying the applied laser fluence, the surface morphology of LIG transitions from a 3D porous structure to a multilayered structure, Co3O4 progressively distributes from the surface to the inside of the LIG structure, and the structure changes from a sphere to a whisker-like shape. These altered attributes contribute to distinct differences in the double layer capacitance and pseudocapacitance behaviors of Co3O4/LIG, as reflected in its associated electrochemical performance. Additionally, a facile fabrication strategy including simple casting and peeling steps was used to generate stretchable microsupercapacitors (MSCs) on a waterborne polyurethane (WPU) substrate. The as-prepared stretchable MSCs present outstanding areal capacitance and excellent mechanical flexibility, whereas their electrochemical differences are significantly minimized and dominated by their inner structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    38
    Citations
    NaN
    KQI
    []