Magnetically Targeted Viral Envelopes: A PET Investigation of Initial Biodistribution

2008 
Gene and drug therapy for organ-specific diseases in part depends on the efficient delivery to a particular region of the body. We examined the biodistribution of a viral envelope commonly used as a nanoscale gene delivery vehicle using positron emission tomography (PET) and investigated the magnetic alteration of its biodistribution. Iron oxide nanoparticles and 18 F-fluoride were encapsulated by hemagglutinating virus of Japan envelopes (HVJ-Es). HVJ-Es were then injected intravenously in the rat and imaged dynamically using high-resolution PET. Control subjects received injections of encapsulated materials alone. For magnetic targeting, permanent magnets were fixed on the head during the scan. Based on the quantitative analysis of PET images, HVJ-Es accumulated in the liver and spleen and activity remained higher than control subjects for 2 h. Histological sections of the liver confirmed imaging findings. Pixel-wise activity patterns on coregistered PET images of the head showed a significantly different pattern for the subjects receiving magnetic targeting as compared to all control groups. Imaging demonstrated the initial biodistribution of a viral envelope within the rodent by providing quantitative behavior over time and in specific anatomical regions. Magnetic force altered the biodistribution of the viral envelope to a target structure, and could enable region-specific delivery of therapeutic vehicles noninvasively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    21
    Citations
    NaN
    KQI
    []