Influence of Tool Geometry Variation on the Punch Force in Micro Deep Drawing

2013 
Micro forming processes are very well suited for manufacturing of small metal parts in large quantities and micro deep drawing provides a great application potential for the manufacturing of parts with complex shapes. But size effects like changed tribology and material properties usually result in smaller process windows for micro forming operations. Process caused wear as well as large inaccuracy in manufacturing of micro forming tools is responsible for geometrical deviation of the tools from nominal size. Both influences can have essential impact on the process window size and process stability. A better understanding of the influence of tool geometry on process stability can help to improve and optimize process control in micro forming. In addition, a quantitative judgment of the impact of wear and manufacturing inaccuracy will be possible. Therefore, in this study, the impact of different tool geometries on the punch force in micro deep drawing was investigated. Significantly varied tool geometries were punch diameter, drawing gap, punch and drawing die radius and shape of the die edge. FEM simulations as well as experiments were used to determine tool geometry influence on the punch force of a micro deep drawing process. Hereby, it was possible to classify each geometry variation regarding its impact on the punch force and therefore on one important parameter of the process stability. Results show that the greatest impact on the punch force was caused by modifications of the punch diameter and variation of the drawing gap. Changes in punch or drawing die radii proved to be of minor importance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    6
    Citations
    NaN
    KQI
    []