A Sulfur-Rich Small Molecule as a Bifunctional Interfacial Layer for Stable Perovskite Solar Cells with Efficiencies Exceeding 22%

2020 
Abstract Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-dimensional small molecule, SMe-TATPyr, as a bifunctional layer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. X-ray photoelectron spectroscopy analyses show that the sulfur atoms of SMe-TATPyr can passivate the uncoordinated Pb2+ defects and suppress the Pb0 defect formation as Lewis bases. As a result, the power conversion efficiency of PSCs is distinctly increased from 20.4% to 22.3%. Moreover, this simple interfacial modification could effectively enhance the stability of unencapsulated PSCs to retain 95% of the initial efficiency after storage for 1500 h at ambient conditions, in contrast to 70% efficiency retention of the device without SMe-TATPyr under the same conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    20
    Citations
    NaN
    KQI
    []