Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets

2015 
A “lotus-like” effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []