Relevance of the poly(ethylene glycol) linkers in peptide surfaces for proteases assays.

2014 
Poly(ethylene glycol)s (PEGs) with different lengths were used as linkers during the preparation of peptide surfaces for protease detection. In the first approach, the PEG monolayers were prepared using a “grafting to” method on 3-aminopropyltrietoxysilane (APTES)-modified silicon wafers. Protected peptides with a fluorescent marker were synthesized by Fmoc solid phase synthesis. The protected peptide structures enabled their site-specific immobilization onto the PEG surfaces. Alternatively, the PEG-peptide surface was obtained by immobilizing a PEG-peptide conjugate directly onto the modified silicon wafer. The surfaces (composition, grafting density, hydrophilicity, and roughness) were characterized by time-of-flight-secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), contact angle (CA), and atomic force microscopy (AFM). Introducing the PEG linker between the peptide and surface increased their resistance toward nonspecific protein adsorption. The peptide surfaces were e...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    11
    Citations
    NaN
    KQI
    []