Scalability of valence change memory: From devices to tip-induced filaments

2016 
Since the early days of the investigation on resistive switching (RS), the independence of the ON-state resistance with actual cell area has been a trademark of filamentary-switching. However, with the continuous downscaling of the memory cell down to 10 x 10 nm2 and below, the persistence of this phenomena raises intriguing questions on the conductive filaments (CFs) and its dimensions. Particularly, the cell functionality demonstrated at relatively high switching current (> 100 μA) implies a high current density (> 106 A/cm2) inside a CF supposedly confined in few hundreds on nm3. We previously demonstrated a methodology for the direct observation of CFs in integrated devices namely scalpel SPM, which overcomes most of the characterization challenges imposed by the device structure and the small CF lateral dimensions. In this letter, we use scalpel SPM to clarify the scaling potential of HfO2-based valence change memory (VCM) by characterization of CFs programmed at relatively high switching current and...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    14
    Citations
    NaN
    KQI
    []