Disease‐Modifying Osteoarthritis Treatment With Interleukin‐1 Receptor Antagonist Gene Therapy in Small and Large Animal Models

2018 
OBJECTIVE:Gene therapy holds great promise for the treatment of osteoarthritis (OA) because a single intraarticular injection can lead to long-term expression of therapeutic proteins within the joint. This study was undertaken to investigate the use of a helper-dependent adenovirus (HDAd)-mediated intraarticular gene therapy approach for long-term expression of interleukin-1 receptor antagonist (IL-1Ra) as sustained symptomatic and disease-modifying therapy for OA. METHODS:In mouse models of OA, efficacy of HDAd-IL-1Ra was evaluated by histologic analysis, micro-computed tomography (micro-CT), and hot plate analysis. In a horse OA model, safety and efficacy of HDAd-IL-1Ra were evaluated by blood chemistry, analyses of synovial fluid, synovial membrane, and cartilage, and gross pathology and lameness assessments. RESULTS:In skeletally immature mice, HDAd-IL-1Ra prevented development of cartilage damage, osteophytes, and synovitis. In skeletally immature and mature mice, treatment with HDAd-interleukin-1 receptor antagonist post-OA induction resulted in improved-albeit not significantly-cartilage status assessed histologically and significantly increased cartilage volume, cartilage surface, and bone surface covered by cartilage as assessed by micro-CT. Fewer osteophytes were observed in HDAd-IL-1Ra-treated skeletally immature mice. Synovitis was not affected in skeletally immature or mature mice. HDAd-IL-1Ra protected against disease-induced thermal hyperalgesia in skeletally mature mice. In the horse OA model, HDAd-IL-1Ra therapy significantly improved lameness parameters, indicating efficient symptomatic treatment. Moreover, macroscopically and histologically assessed cartilage and synovial membrane parameters were significantly improved, suggesting disease-modifying efficacy. CONCLUSION:These data from OA models in small and large animals demonstrated safe symptomatic and disease-modifying treatment with an HDAd-expressing IL-1Ra. Furthermore, this study establishes HDAd as a vector for joint gene therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    23
    Citations
    NaN
    KQI
    []