Craniofacial Syndrome Identification Using Convolutional Mesh Autoencoders

2021 
Background: Clinical diagnosis of craniofacial anomalies requires expert knowledge. Recent studies have shown that artificial intelligence (AI) based facial analysis can match the diagnostic capabilities of expert clinicians in syndrome identification. In general, these systems use 2D images and analyse texture and colour. While these are powerful tools for photographic analysis, they are not suitable for use with medical imaging modalities such as ultrasound, MRI or CT, and are unable to take shape information into consideration when making a diagnostic prediction. 3D morphable models (3DMMs), and their recently proposed successors, mesh autoencoders, analyse surface topography rather than texture enabling analysis from photography and all common medical imaging modalities, and present an alternative to image-based analysis. Methods: We present a craniofacial analysis framework for syndrome identification using Convolutional Mesh Autoencoders (CMAs). The models were trained using 3D photographs of the general population (LSFM and LYHM), computed tomography data (CT) scans from healthy infants and patients with 3 genetically distinct craniofacial syndromes (Muenke, Crouzon, Apert). Findings: Machine diagnosis outperformed expert clinical diagnosis with an accuracy of 99.98%, sensitivity of 99.95% and specificity of 100%. The diagnostic precision of this technique supports its potential inclusion in clinical decision support systems. Its reliance on 3D topography characterisation makes it suitable for AI assisted diagnosis in medical imaging as well as photographic analysis in the clinical setting. Interpretation: Our study demonstrates the use of 3D convolutional mesh autoencoders for the diagnosis of syndromic craniosynostosis. The topological nature of the tool presents opportunities for this method to be applied as a diagnostic tool across a number of 3D imaging modalities. Funding: This work has been funded by Great Ormond Street Hospital for Children Charity (Grant No. 12SG15), the Engineering and Physical Sciences Research Council (EP/N02124X/1) and the European Research Council (ERC-2017-StG-757923). Declaration of Interests: A.P. and S.Z. currently work with Huawei Technologies Co., Ltd. They were with Imperial College London and University College London during the experiments, respectively. The other authors declare no competing interests. Ethics Approval Statement: Patient data for this study were retrospectively retrieved from electronic medical records after receiving approval from the Institutional Review Board: Great Ormond Street Hospital (R&D no. 14DS25).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []