Acetylresveratrol as a Potential Substitute for Resveratrol Dragged the Toxic Aldehyde to Inhibit the Mutation of Mitochondrial DNA.

2020 
The aim of this study was to explore whether or not acetylresveratrol as a potential substitute for resveratrol dragged the toxic aldehyde to inhibit the mutation of mitochondrial DNA. The results revealed that the acetylresveratrol shifted ultraviolet peak of trans-crotonaldehyde from 316 to 311 nm. In mitochondria, the acetylresveratrol split the ultraviolet peak at 311 nm of trans-crotonaldehyde into 311 nm and 309 nm; the aldehyde Raman band of trans-crotonaldehyde was red shifted by the acetylresveratrol from 1689 to 1686 cm−1 with obvious band decline; Raman bands at 1149 cm−1, 1168 cm−1, and 1325 cm−1 of acetylresveratrol disappeared. In aldehyde dehydrogenase, the aldehyde Raman band of trans-crotonaldehyde was red shifted by the acetylresveratrol from 1689 to 1684 cm−1 with band decline; Raman bands at 1150 cm−1, 1168 cm−1, and 1324 cm−1 of acetylresveratrol declined. The weak acidic microenvironment was the best, for the acetylresveratrol dragged the toxic aldehyde of trans-crotonaldehyde. Compared with the resveratrol, the effect of the acetylresveratrol on the toxic aldehyde of trans-crotonaldehyde was very similar to that of the resveratrol. The acetylresveratrol is very suitable as a potential substitute for resveratrol dragged the toxic aldehyde to inhibit the mutation of mitochondrial DNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []