Jet shape and redistribution of the lost energy from jets in Pb+Pb collisions at the LHC in a multiphase transport model

2021 
Jet-medium interaction involves two important effects: jet energy loss and medium response. The search for jet-induced medium excitations is one of the hot topics in jet quenching study in relativistic nuclear collisions. In this work, we perform a systematic study on how the lost energy from hard jets evolves with the bulk medium and redistributes in the final state of heavy-ion collisions via a multi-phase transport model. In particular, the ($\Delta \eta, \Delta \phi$) distribution of charged particles with respect to the jet axis and jet shape function are studied for various Pb+Pb collision centralities and for different transverse momentum intervals of charged particles. Our numerical result shows a strong enhancement of soft particles at large angles for Pb+Pb collisions relative to p+p collisions at the LHC, qualitatively consistent with recent CMS data. This indicates that a significant fraction of the lost energy from hard jets is carried by soft particles at large angles away from the jet axis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []