Applications of Plasma-Enhanced Metalorganic Chemical Vapor Deposition

2020 
Abstract The use of plasma enhancement for growth of III-V compound semiconductor materials by metalorganic chemical vapor deposition (MOCVD) is examined, to improve control of microstructure, develop understanding of the underlying growth mechanisms, and expand the range of materials combinations for photovoltaic and solid-state lighting applications. Whereas plasma is commonly used with group-IV materials, such as silicon, few studies have examined the impact of plasma-enhanced MOCVD (PE-MOCVD) for III-V materials growth. PE-MOCVD provides improved decomposition of metalorganic precursors, which is driven by hydrogen plasma to augment hydride reactions and thermal pyrolysis, but plasma generation requires low reactor pressure. We have demonstrated elemental Al films grown by PE-MOCVD, which show distinct crystallographic texturing, which assume epitaxial microstructure upon post-growth annealing. We also demonstrate PE-MOCVD of GaAs at temperatures as low as 300 °C. With increasing radio-frequency power, the GaAs growth rate shows a transition from power limited to mass-transport limited. PE-MOCVD grown Ga0.5In0.5P shows no detectable spontaneous atomic ordering, which offers a mechanism to form order/disorder unicompositional heterostructures, without temperature change or impurity incorporation. In its current implementation, PE-MOCVD grown films have shown microstructural degradation, that we attribute to direct plasma exposure during growth. Improvements in the system design and growth sequences are at the focus of on-going efforts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []