Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale

2015 
Technologically controlling nanostructures is essential to tailoring the functionalities and properties of nanomaterials. Various methods free from lithography-based techniques have been employed to fabricate 2D nanostructures; however it is still hard to achieve a well interconnected 2D regular nanostructure. Here, we demonstrate a facile chemical solution method to self-assemble a regular and interconnected VO2 nanonet on the wafer scale. The nanonet shows a well-defined 2D truss network constructed by VO2 nanorods with twinning relationships. The growth direction and crystallographic orientation of nanorods are synchronously controlled, leading to horizontally epitaxial growth of nanorods along three symmetric directions of the (001) single-crystal sapphire substrate. The unique nanonets enable the acquisition of excellent resistance switching properties and dramatic fatigue endurance. A large resistance change of near 5 orders with a 1.7 °C width of the hysteresis loop is characterized comparably to t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    45
    Citations
    NaN
    KQI
    []