Hydrogeological impact assessment by tunnelling at sites of high sensitivity

2015 
Abstract A tunnel for the High Speed Train (HST) was constructed in Barcelona with an Earth Pressure Balance (EPB) Tunnel Boring Machine (TBM). The tunnel crosses Barcelona and passes under some famous landmarks such as the Sagrada Familia and the Casa Mila. Both monuments are UNESCO world heritage sites and a committee appointed by the UNESCO acted as external observers during the construction. Concerns about soil settlements and the hydrogeological impacts of the construction were raised. These concerns were addressed during the design stage to forestall any unexpected events. The methodology consisted of 1) characterising the geology in detail, 2) predicting the impacts caused in the aquifer, 3) predicting the soil displacements due to water table oscillations produced by the construction, and 4) monitoring the evolution of groundwater and soil settlements. The main estimated impact on groundwater was a moderate barrier effect. The barrier effect, the magnitude of which matched the predictions, was detected during construction. The monitoring of soil settlements revealed short and long term movements. The latter movements matched the analytical predictions of soil displacements caused by the groundwater oscillations. This paper proposes a realistic procedure to estimate impacts on groundwater during tunnel construction with an EPB. Our methodology will considerably improve the construction of tunnels in urban areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    24
    Citations
    NaN
    KQI
    []