Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose

2020 
Abstract Extrusion-based bioprinting suffers from the poor printability of such hydrogels as gelatin methacrylate (GelMA) due to their low viscosity and difficulty in printing them into structures of complex shape. The present study deals with hydrogel materials by focusing on the mixture of cell-laden photopolymerizable GelMA as a main printing material and the mixture of alginate and methylcellulose (Alg/MC) as a support material because of its high viscosity and good thixotropic property. One extrusion-based approach is developed by printing the two mixtures into structures in an alternating layer-by-layer manner, with the electrostatic interactions between polycationic GelMA and polyanionic Alg/MC contributing to the integrity of the structures. The final printed structures are exposed to ultraviolet (UV) light to form crosslinks in GelMA through photopolymerization for further structural strengthening. The one-time UV exposure minimizes cell damage in cell-GelMA, demonstrating an advantage over previously reported studies that required repeated UV exposures upon the printing of each layer of a structure. The other approach is developed by submerging the extrusion nozzle into a bath of Alg/MC to print cell-laden GelMA structures, which, upon printing completion, are also subject to one-time UV exposure before the removal of the support material Alg/MC. A flower with living cells is printed using this approach to demonstrate its capability of fabricating structures with geometric complexity. The structures printed using both approaches demonstrate a well-maintained shape fidelity, structural integrity and cell viability of over 93% up to five culturing days. The proposed two printing approaches based on the cell-GelMA and Alg/MC pair will be beneficial for exploring new opportunities in bioprinting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    8
    Citations
    NaN
    KQI
    []