Carbosilane dendrimer nanotechnology outlines of the broad HIV blocker profile.

2012 
Researchers have been working hard for more than 20 years to develop safe and effective microbicides to empower women to better control their own sexual life and to protect themselves against HIV and other sexually transmitted infections (STIs). Microbicide classes include moderately specific macromolecular anionic polymers that block HIV and other STIs, and HIV specific drugs that inhibit viral entry and reverse transcription. Based on innovative nanotechnology design, we showed a novel water-soluble anionic carbosilane dendrimer (2G-S16) as a propitious molecule against HIV-infection. A state-of-the-art research was accomplished that focused on biomedical cutting-edge techniques such as in vitro and in vivo cytotoxicity assays performed on female rabbit genital tracts, simulate in vitro model of vaginal epithelium in order to evaluate HIV transmission blockade through the monolayer, complete gene expression profiling experiment to study deregulated genes after 2G-S16 exposition, molecular dynamics simulation of 2G-S16 molecule against principal proteins of HIV particles and pro- and anti-inflammatory cytokine profile study. Therefore, a high-throughput study and detailed analysis of the results were achieved in this article. We provided promising outcomes to encourage 2G-S16 as a hopeful microbicide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    73
    Citations
    NaN
    KQI
    []