Systematic enhancement for the 14C(p, t)12C reaction leading to the T = 0 states

1990 
Abstract The 14 C(p, t) 12 C reaction leading to the states in 12 C in the region of excitation energy E x = 0–19 MeV was studied at E p = 40.3 MeV. The data were analyzed within the framework of exact-finite-range first and second-order DWBA calculations using Op-shell-model wave functions. The transitions to the T = 0 states of natural parity were found to require 3 times more enhancement than those to the T = 1 states. Angular distributions of cross sections for the 1 + states were reproduced by including two-step processes such as (p-d-t) and (p, t) (t, t'), but their absolute values were underestimated in the present analysis. The (p, t) transitions to the 3 − and 4 + states, which are forbidden by the direct pickup process in the Op-shell-model space, were also investigated. The transition to the α-cluster-like 7.65 MeV 0 + 2 state was explained reasonably by a multistep process via the 4.44 MeV 2 + state of 12 C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []