A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles

2015 
Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    113
    Citations
    NaN
    KQI
    []