Pressure passivation of mild pyrolysis char

1999 
Low-rank coals that have been thermally dried in the mild pyrolysis process have a tendency to spontaneously combust. The spontaneous combustion of coals and chars has been linked to their affinity for oxygen. The USDOE has developed a method for the passivation of mild pyrolysis char derived from a low-rank coal using pressure differentials to control the oxidation of the active sites in the char rapidly and safely. Initial experiments performed by the USDOE show that the affinity of the coal for oxygen uptake (residual oxygen demand, ROD) is reduced by exposure of the coal-char to high-pressure gas mixtures including air or oxygen-enriched air. Laboratory-scale tests have shown that the ROD can be rapidly reduced by cycling the active coals between low-pressure (atmospheric pressure or less) and high-pressure (500 psi to 1,500 psi) regimes. Cycling the pressure of the treatment gas provides rapid passivation resulting from two effects: The high-pressure cycle forces fresh oxygen into the pores which have been purged of adsorbed gases and reaction products. The pores of coal are small enough to prohibit free convection and force oxygen exchange to take place by way of diffusion under ambient conditions. The forced introduction of fresh process gas undermore » high pressure overcomes the restrictions due to diffusion limits while the removal of adsorbed products clears the way to active surface sites. The high pressure increases the number of oxygen molecules with sufficient energy to overcome the activation barrier of the passivation reaction, due to the increased number of molecules per unit volume of the high-pressure gas. Combined, the two effects rapidly produce a coal with a significantly reduced ROD.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []