Mechanically Strong and Electrochemically Stable Single-Ion Conducting Polymer Electrolytes Constructed from Hydrogen Bonding.

2021 
Herein, composite membranes based on a single-ion conducting polymer electrolyte (SIPE) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) were prepared by an electrospinning technology. The SIPE with hydrogen bonding was obtained via reversible addition-fragmentation chain transfer (RAFT) copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA), poly(ethylene glycol) methyl ether methacrylate (PEGMA), and lithium 4-styrenesulfonyl (phenylsulfonyl) imide (SSPSILi). The obtained composite membrane exhibited a highly porous network structure, superior thermal stability (>300 °C), and high mechanical strength (17.3 MPa). The fabricated SIPE/PVDF-HFP composite membrane without lithium salts possessed a high ionic conductivity of 2.78 × 10-5 S cm-1 at 30 °C, excellent compatibility with the lithium metal electrode, and high lithium-ion transference number (0.89). The symmetric Li//Li cell exhibited a superior cycle performance without short circuit, indicating the generation of a stable interface between SIPE and the lithium metal electrode during the process of lithium plating/stripping, which could inhibit lithium dendrite growth in lithium metal batteries (LMBs). The Li//LiFePO4 cell also exhibited superior cycle life and excellent rate capability at 60 or 25 °C. In consequence, the composite membrane exhibits a considerable future prospect for advanced LMBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []