Genetic characterization of short stature patients with overlapping features of growth hormone insensitivity syndromes.

2021 
Context and objective Growth hormone insensitivity (GHI) in children is characterized by short stature, functional IGF-I deficiency and normal or elevated serum GH concentrations. The clinical and genetic etiology of GHI is expanding. We undertook genetic characterization of short stature patients referred with suspected GHI and features which overlapped with known GH-IGF-I axis defects. Design and methods Between 2008 and 2020, our center received 149 GHI referrals for genetic testing. Genetic analysis utilized a combination of candidate gene sequencing (CGS), whole exome sequencing (WES), array comparative genomic hybridization (aCGH) and a targeted whole genome short stature gene panel. Results Genetic diagnoses were identified in 80/149 subjects (54%) with 45/80 (56%) having known GH-IGF-I axis defects (GHR n=40, IGFALS n=4, IGFIR n=1). The remaining 35/80 (44%) had diagnoses of 3M syndrome (n=10) (OBSL1 n=7, CUL7 n=2 and CCDC8 n=1), Noonan syndrome (n=4) (PTPN11 n=2, SOS1 n=1 and SOS2 n=1), Silver-Russell syndrome (n=2) (Loss of methylation on chromosome 11p15 and uniparental disomy for chromosome 7), Class 3-5 copy number variations (n=10) and disorders not previously associated with GHI (n=9) (Barth syndrome, Autoimmune lymphoproliferative syndrome, Microcephalic osteodysplastic primordial dwarfism Type II, Achondroplasia, Glycogen storage disease Type IXb, Lysinuric protein intolerance, Multiminicore Disease, MACS syndrome and Bloom syndrome). Conclusion We report the wide range of diagnoses in 149 patients referred with suspected GHI, which emphasizes the need to recognize GHI as a spectrum of clinical entities in undiagnosed short stature patients. Detailed clinical and genetic assessment may identify a diagnosis and inform clinical management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []