Biological Conversion Mechanism of Sulfate Reduction Ammonium Oxidation in ANAMMOX Consortia

2021 
Sulfate reduction with ammonium oxidation (SRAO) in laboratory ANAMMOX reactors was considered as an autotrophic process mediated by ANAMMOX bacteria (AnAOB), in which ammonium, as an electron donor, was oxidized by the electron acceptor sulfate. This process was developed based on the transformations of nitrogenous and sulfurous compounds observed in natural environments. Reported results vary widely for conversion mole ratios (ammonium/sulfate) as do intermediate and final products of the sulfate reduction. Thus, hypotheses surrounding biological conversion pathways of ammonium and sulfate in ANAMMOX consortia are implausible. In this study, continuous reactor experiments and batch tests were conducted under micro-aerobic (-100 mV < ORP < 0 mV, 0.5 mg·L-1 < DO < 1 mg·L-1), anoxic (-300 mV < ORP < -100 mV, 0.2 mg·L-1 < DO < 0.5 mg·L-1) and anaerobic (ORP < -300 mV, DO < 0.2 mg·L-1) conditions with different inoculated sludge (ANAMMOX sludge and mixed sludge) to verify the SRAO phenomena and identify possible pathways of substrate conversion. The key findings were that SRAO occurred only where SRB existed under anoxic condition, and was absent under anaerobic conditions with ANAMMOX consortia. The analysis of the microbial community and functional gene expression showed that ammonium oxidation by AAOB coupled with sequential ANAMMOX is possibly responsible for the loss of ammonium under anoxic condition. Organic substances released through microbial decay contributed to heterotrophic sulfate conversion by SRB. AnAOB do not possess the ability to oxidize ammonium with sulfate as the electron acceptor. SRAO could, in fact, involve a combination of aerobic ammonium oxidation, ANAMMOX, and heterotrophic sulfate reduction processes, which are mediated via AOB, AnAOB, and SRB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []