Spike vs nucleocapsid SARS-CoV-2 antigen detection: application in nasopharyngeal swab specimens

2021 
Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many antigen detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2 nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices tendency to exhibit false positive results. In this work we developed a novel alternative spike-based antigen assay, comprised of four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike S1 subunit. The assay performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike-assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct<25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct<25) while less specific (87% specificity). Despite being out-performed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []