Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells

2012 
The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-terminated alkoxysilanes to adjust the zeta potential from highly negative to positive values in ethanol. A transfer of the particles into water, physiological buffers, and cell culture media reduces the absolute value of the zeta potential and changes the colloidal stability. Particles stabilized by l-arginine, l-lysine, and amino silanes with short alkyl chains are only moderately stable in water and partially in PBS or TRIS buffer, but aggregate in cell culture media. Nonfunctionalized, N-(6-aminohexyl)-3-aminopropyltrimethoxy silane (AHAPS), and PEG-functionalized particles are stable in all media under study. The high colloidal stability of positively charged AHAPS-functionalized particles scales with the io...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    151
    Citations
    NaN
    KQI
    []