Molecular diagnosis based on comprehensive genetic testing in 800 Chinese families with non‐syndromic inherited retinal dystrophies

2020 
IMPORTANCE Inherited retinal dystrophies (IRDs) are a group of monogenic diseases, one of the leading causes of blindness. BACKGROUND Introducing a comprehensive genetic testing strategy by combining single gene Sanger sequencing, next-generation sequencing (NGS) including whole exome sequencing (WES), and a specific hereditary eye disease enrichment panel (HEDEP) sequencing, to identify the disease-causing variants of 800 Chinese probands affected with non-syndromic IRDs. DESIGN Retrospective analysis. PARTICIPANTS Eight hundred Chinese non-syndromic IRDs probands and their families. METHODS A total of 149 patients were subjected to Sanger sequencing. Of the 651 patients subjected to NGS, 86 patients underwent WES and 565 underwent HEDEP. Patients that likely carried copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA) or quantitative fluorescence PCR(QF-PCR). MAIN OUTCOME MEASURES The diagnostic rate. RESULTS (Likely) pathogenic variants were determined in 481 cases (60.13% detection rate). The detection rates of single gene Sanger sequencing, WES, and HEDEP were 86.58%, 31.40%, and 56.99%, respectively. Approximately 11.64% of 481 cases carried AD variants, 72.97% carried AR variants, and 15.39% were found to be X-linked. CNVs were confirmed by MLPA or QF-PCR in 17 families. Fourteen genes that each caused disease in 1% or more of the cohort were detected, and these genes were collectively responsible for disease in almost one half (46.38%) of the families. CONCLUSIONS AND RELEVANCE Sanger sequencing is ideal to detect pathogenic variants of clinical homogeneous diseases, while NGS is more appropriate for patients without an explicit clinical diagnosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    5
    Citations
    NaN
    KQI
    []