The Origin of Short-Time Variations in Cosmic-Ray Intensity

2019 
It is well known today that a continuous stream of highly ionized plasma is emitted from the Sun’s surface. This plasma is called the solar wind and consists of protons, electrons, and light nuclei. The solar wind pushes the solar magnetic field into interplanetary space to form the interplanetary magnetic field. The interplanetary magnetic field is a dynamical system that depends on the solar cycle and the Sun’s rotation phase. Thus, the Solar System is a natural plasma physics laboratory with an enormous multitude of different effects showing the current state of the system. By recording cosmic-ray fluxes, one can study the behavior of the interplanetary magnetic field and obtain information about processes that occur both on the Sun’s surface and throughout the Solar System. The main short-time variations in cosmic-ray intensity include the 27-day variations and the Forbush decreases. These variations are caused by complex solar plasma structures, which are generated by different processes on the Sun’s surface and propagate through space in a wide range of velocities. Cosmic-ray fluxes recorded with the PAMELA magnetic spectrometer on board the Resurs DK1 satellite in 2006–2016 are used to show some examples of cosmic-ray variations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []