Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling

2014 
The oriented attachment of magnetic nanoparticles is recognized as an important pathway in the magnetic-hyperthermia cancer treatment roadmap, thus, understanding the physical origin of their enhanced heating properties is a crucial task for the development of optimized application schemes. Here, we present a detailed theoretical analysis of the hysteresis losses in dipolar-coupled magnetic nanoparticle assemblies as a function of both the geometry and length of the array, and of the orientation of the particles’ magnetic anisotropy. Our results suggest that the chain-like arrangement biomimicking magnetotactic bacteria has the superior heating performance, increasing more than 5 times in comparison with the randomly distributed system when aligned with the magnetic field. The size of the chains and the anisotropy of the particles can be correlated with the applied magnetic field in order to have optimum conditions for heat dissipation. Our experimental calorimetrical measurements performed in aqueous and...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    205
    Citations
    NaN
    KQI
    []