A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells

2021 
The development of high-catalytic-activity anode materials with carbon tolerance is an important research undertaking for the successful application of intermediate-temperature solid oxide fuel cells (IT-SOFCs). Herein, a novel anode material capable of in-situ exsolution of nanoparticles, Sr1.95Fe1.4Co0.1Mo0.5O6-δ (SFCoM), is designed and prepared from perovskite by a strategy combining A-site defect regulation and B-site doping. The electrocatalytic activity is greatly enhanced by the in-situ exsolved Co nanoparticle. The maximum power densities of a single cell with [email protected] as the anode are 1.01 and 0.79 W cm−2 when H2 and C3H8, respectively, are used as the fuel at 750 °C. In addition, the [email protected] anode exhibits excellent carbon-deposition resistance due to the synergistic effect of the Co nanoparticles and perovskite backbone. When C3H8 is used as the fuel, the anode material long-term operational stability over 200 h without performance degradation. Thus, our methodology represents a promising material design strategy for developing high-performance IT-SOFC anodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    12
    Citations
    NaN
    KQI
    []