DLP fabrication of TiO2 nanoparticle thin films

2021 
Abstract 3D printing technology has become a valuable and successful tool for many areas, including materials sciences. Nanoparticle thin film fabrication commonly requires expensive, highly specialized equipment not available in basic sciences laboratories. A simple, inexpensive, and straightforward methodology for the deposition of thin films composed of semiconductor TiO2 nanoparticles using a DLP (Digital Light Processing) 3D printer is presented in this work. X-ray diffraction (XRD), Raman, Ultraviolet-visible (UV-Vis), and Photoluminescence (PL) spectroscopies were used to study the film's structural and optical properties. By analyzing Scanning Electron Microscopy (SEM) micrographs, particle size distribution and film thickness were studied. Single-layer TiO2 (anatase) thin films with thickness around 114.3 ± 39.5 nm were successfully deposited through DLP 3D printing. The deposited films can be used in sensors, energy harvesting, catalysis, hydrogen production, and other UV light applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []