Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles

2006 
Abstract Performance of a long differential mobility analyzer (LDMA) in measurements of nanoparticles was evaluated experimentally and numerically. In the evaluation of the LDMA measurements, silver particles in a size range of 5–30 nm were used under an increased flow rate. The numerical calculation method was used for calculating the particle trajectory in the LDMA, and the results were used for a comparison with Stolzenburg's transfer function. Using the CFD method, the flow around the aerosol inlet slit was analyzed, and the resulting particle mobility distribution was compared with that for an ideal flow. The resulting flow effect on the penetration efficiency caused by the inlet and exit slits were negligible when a well-designed system was used. The experimental measurements of mobility distributions were in good agreement with the theoretical prediction of particle size ranges over 10 nm, but some discrepancies were observed when particle size ranges were below 10 nm in size. The numerical calculation estimated the discrepancy found below the 10 nm particle size ranges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    18
    Citations
    NaN
    KQI
    []