Theoretical and experimental investigations of nano-Schottky contacts

2016 
Formation of metal-semiconductor (M-S) contacts at sub-20 nanometer range is a key requirement for down-scaling of semiconductor devices. However, electrical measurements of M-S contacts at this scale have exhibited dramatic change in the current-voltage (I-V) characteristics compared to that of conventional (or planar) Schottky contacts. This change is actually attributed to the limited metal contact region where the transferred charge from the semiconductor into the metal is confined to a small surface area, which in turn results in an enhanced electric field at the nano-M-S interface. We here present detailed theoretical models to analyze the nano-M-S junctions at 10 nm contact range and then implement this analysis on the experimental data we conducted under these conditions. Both theoretical and experimental results demonstrate a significant effect of the contact size on the electronic structure of the M-S junctions and thus on the I-V characteristics. This effect is rather prominent when the size of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    21
    Citations
    NaN
    KQI
    []