Variation in Nitrogen Fixing Ability among Natural Isolates of Azospirillum

1998 
A total of 285 strains of Azospirillum were isolated from soils from seven geographic regions in New South Wales, Australia, using an immunomagnetic separation procedure which does not select strains according to their nitrogen-fixing ability. By combining amplification and restriction analysis of 16S rDNA (ARDRA) patterns with serological, morphological and biochemical results, we found that almost all isolates were A. brasilense and A. lipoferum. There was wide variation in the nitrogenase (acetylene reduction) activity of isolates grown in nitrogen-free, semisolid medium, with differences in average activities between regions. Isolates with zero or negligible nitrogenase activity were found in samples from only two regions, one of which had two out of 26 strains with no activity. Representative isolates, having the highest, the lowest, and intermediate nitrogen fixation rates for each site, were used to inoculate the roots of wheat plants in a model system. Most of the isolates, in association with wheat roots, reduced between 1 and 5 nmol C2H4· mg dry root−1· day−1, but certain strains gave considerably higher activities. The rank order of nitrogen fixation activity on wheat roots did not correlate well with that of nitrogen fixation in pure culture; some strains that fixed nitrogen vigorously in pure culture had low rates of fixation on roots, and vice versa. This inconsistency could not be explained by variations in the root colonizing ability of different strains. However, isolates of A. lipoferum had a higher average nitrogenase activity than A. brasilense, both in Nfb medium and in association with wheat roots. The majority of the most active nitrogen fixers were A. lipoferum. When wheat plants were inoculated with mixtures of two or four strains, nitrogen fixation rates were generally between the rates for the component strains when inoculated individually. There was no benefit from using mixtures of different strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    47
    Citations
    NaN
    KQI
    []