In Situ Grown CoMn2O4 3D-Tetragons on Carbon Cloth: Flexible Electrodes for Efficient Rechargeable Zinc–Air Battery Powered Water Splitting Systems

2021 
The integration of energy conversion and storage systems such as electrochemical water splitting (EWS) and rechargeable zinc-air battery (ZAB) is on the vision to provide a sustainable future with green energy resources. Herein, a unique strategy for decorating 3D tetragonal CoMn2 O4 on carbon cloth (CMO-U@CC) via a facile one-pot in situ hydrothermal process, is reported. The highly exposed morphology of 3D tetragons enhances the electrocatalytic activity of CMO-U@CC. This is the first demonstration of such a bifunctional activity of CMO-U@CC in an EWS system; it achieves a nominal cell voltage of 1.610 V @ 10 mA cm-2 . Similarly, the fabricated rechargeable ZAB delivers a specific capacity of 641.6 mAh gzn-1 , a power density of 135 mW cm-2 , and excellent cyclic stability (50 h @ 10 mA cm-2 ). Additionally, a series of flexible solid-state ZABs are fabricated and employed to power the assembled CMO-U@CC-based water electrolyzer. To the best of the authors' knowledge, this is the first demonstration of an in situ-grown binder-free CMO-U@CC as a flexible multifunctional electrocatalyst for a built-in integrated rechargeable ZAB-powered EWS system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    106
    References
    0
    Citations
    NaN
    KQI
    []