Computational Design of Durable Spherical Nanoparticles with Optimal Material, Shape, and Size for Ultrafast Plasmon-Enhanced Nanocavitation

2016 
Photons interaction with metallic nanoparticles can excite a resonant plasmon that concentrates energy at the nanoscale. At high intensity, this quasi-particle decays into a photoexcited nanoplasma that triggers the generation of nanobubbles, which can be used for imaging and therapeutic purposes. This highly nonlinear wavelength-dependent process is controlled by the nanoparticle material, shape, and size in intricate ways, which justifies the need for a systematic design approach that currently lacks in the field. To palliate to this, we developed in this work a computational framework that enables the efficient in silico screening of large libraries of spherically symmetric structures and metallic materials. Using this framework, we have investigated the nanocavitation performance of spherical nanoparticles with more than 14 million combinations of materials, shapes, sizes, and irradiation conditions, from which we could distill general principles for the design of durable nanoantennas. In the near-inf...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    18
    Citations
    NaN
    KQI
    []