Effect of synthesis highly ordered TiO2 nanotube arrays with enhanced photocatalytic properties by time, electrolytic voltage, heating temperature and Polyvinyl pyrrolidone

2016 
Highly ordered TiO2 nanotube arrays were prepared by anodization method with doped Polyvinyl pyrrolidone (PVP) addition. The as-prepared samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy. The results suggested that TiO2 nanotubes arrays modified by 0.10 wt% PVP were better uniform and more highly ordered than that of pure TiO2. The average inner diameter and the tube length of TiO2 nanotubes were extended approximately 77 nm and 5.21 μm, respectively. Meanwhile, the optimum synthesis conditions (40 V, 4 h and 450 °C) were determined by SEM and XRD. In addition, the photocatalytic activity of the as-prepared samples was investigated for the degradation of RhB under UV-lamp irradiation. The results showed that almost 100 % of RhB was degradation within 80 min by the as-prepared nanotubes in the optimum synthesis conditions. It was indicated that the photocatalytic activity of the as-prepared nanotubes was improved greatly due to their well morphology, enhanced UV-light absorption property and electron transmission ability. In general, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity and improved microstructure by anodization process with PVP addition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    7
    Citations
    NaN
    KQI
    []