Development of New High‐Performance Visible Light Photoinitiators Based on Carbazole Scaffold and Their Applications in 3D Printing and Photocomposite Synthesis

2019 
In this article, new compounds based on the carbazole scaffold (DMs = DM1 and DM2, constituted by a carbazole unit connected on positions 3 and 6 to a two 4,4 '-dimethoxydiphenylamine groups and differing by the substituent present on the nitrogen heteroatom of the carbazole core) were synthesized and proposed as high-performance visible light photoinitiators/photosensitizers for both the free-radical polymerization of methacrylates and the cationic polymerization of epoxides upon visible light exposure using LED@405 nm. Remarkably, DM2 leads to higher final conversions than DM1. In order to study the photophysical and photochemical properties of the carbazole derivatives, different parameters were taken into account such as the light absorption, the steady-state photolysis, and the fluorescence spectroscopy. Using different techniques such as fluorescence quenching, redox behavior, and cyclic voltammetry, we are able to discuss the photosensitization/photoinitiation reactions providing a full coherent picture of the involved chemical mechanisms. The photosensitization of the carbazole derivatives occurred predominantly via singlet excited states at the rate of the diffusion limit. Upon exposure to laser diode at 405 nm, DMs show high performance in initiating systems for 3D resins. Remarkably, DM2 can also be used in photocomposite synthesis using light-emitting diode conveyor. (c) 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    21
    Citations
    NaN
    KQI
    []