Seaweed-Derived Nitrogen-Rich Porous Biomass Carbon as Bifunctional Materials for Effective Electrocatalytic Oxygen Reduction and High-Performance Gaseous Toluene Absorbent

2019 
Seeking economical, high-performance catalysts from natural waste to substitute traditional noble metal catalysts has been an emerging strategy in recent decades for energy catalysis and conversion devices. In this work, sustainable biomass kelp-derived self-nitrogen doped porous biomass carbon (PBC) with tunable pore structure and large specific surface areas was skillfully developed. The effect of calcination temperature on the pore structure and morphology of PBC was investigated to further optimize its performance. Honeycomb-like PBC exhibited high specific surface areas (805.2 m2 g–1) and remarkable catalytically active nitrogen sites (higher to ∼1.51 wt %) with quantitative analysis. It largely enhanced its electrochemical performance such that the PBC-800 material showed excellent oxygen reduction reaction activity, and the electron transfer path of this process was fully explained by simulated density functional theory calculations. Interestingly, it possessed a high adsorption capacity for gaseou...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    24
    Citations
    NaN
    KQI
    []