Photo-Fenton superwettable NiFe2O4/TA/PVDF composite membrane for organic pollutant degradation with successively oil-in-water separation.

2022 
Abstract With regard to the treatment of multicomponent wastewaters, to construct multifunctional super-wetting membranes is highly attractive in current decade. In this work, a low-cost and novel NiFe2O4/TA/PVDF composite membrane was fabricated via a facile in-situ deposition method under vacuum system. In which, photo-response NiFe2O4 nanoparticles were immobilized on the surface of flexible PVDF base membrane via hydrophilic tannic acid (TA) as the binder. The resulting composite membrane exhibited a special superwettability of superamphilicity in air and underwater superoleophobicity with a nanoscale rough surface structure. One the one hand, NiFe2O4/TA/PVDF membrane can be used a reusable catalyst in Photo-Fenton degradation of organic dyes with high efficiency. On the other hand, the composite membrane can effectively separate emulsified oils from representative oil-in-water emulsions with excellent separation efficiency all above 99 % and relatively high flux (880–1525 Lm−2h−1 bar−1). More importantly, NiFe2O4/TA/PVDF composite membrane showed satisfactory processing efficiency, anti-fouling property and excellent reusability in deal with the mixed organic pollutants (water-insoluble emulsified oils and water-soluble organic dyes) existed in one aqueous system, which followed the procedure of initially photo-Fenton degradation of organic dyes emulsion and successively separation the remaining emulsion over the recovered membrane. This successful development of high-performance NiFe2O4/TA/PVDF composite membrane will provide a new candidate for both oil/water separation and organic wastewater treatment, as well as promote the utilization of spinel ferrites in the construction of multifunctional membrane for environmental purification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []