Superparticle phenomenology from the natural mini-landscape

2017 
The methodology of the heterotic mini-landscape attempts to zero in on phenomenologically viable corners of the string landscape where the effective low energy theory is the Minimal Supersymmetric Standard Model with localized grand unification. The gaugino mass pattern is that of mirage-mediation. The magnitudes of various SM Yukawa couplings point to a picture where scalar soft SUSY breaking terms are related to the geography of fields in the compactified dimensions. Higgs fields and third generation scalars extend to the bulk and occur in split multiplets with TeV scale soft masses. First and second generation scalars, localized at orbifold fixed points or tori with enhanced symmetry, occur in complete GUT multiplets and have much larger masses. This picture can be matched onto the parameter space of generalized mirage mediation. Naturalness considerations, the requirement of the observed electroweak symmetry breaking pattern, and LHC bounds on m(gluino) together limit the gravitino mass to the m_{3/2}~ 5-60 TeV range. The mirage unification scale is bounded from below with the limit depending on the ratio of squark to gravitino masses. We show that while natural SUSY in this realization may escape detection even at the high luminosity LHC, the high energy LHC with \sqrt{s}=33 TeV could unequivocally confirm or exclude this scenario. It should be possible to detect the expected light higgsinos at the ILC if these are kinematically accessible, and possibly also discriminate the expected compression of gaugino masses in the natural mini-landscape picture from the mass pattern expected in models with gaugino mass unification. The thermal WIMP signal should be accessible via direct detection searches at the multi-ton noble liquid detectors such as Xenon-nT or LZ.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    132
    References
    31
    Citations
    NaN
    KQI
    []