Genetic discovery and translational decision support from exome sequencing of 20,791 type 2 diabetes cases and 24,440 controls from five ancestries

2018 
Protein-coding genetic variants that strongly affect disease risk can provide important clues into disease pathogenesis. Here we report an exome sequence analysis of 20,791 type 2 diabetes (T2D) cases and 24,440 controls from five ancestries. We identify rare (minor allele frequency 30 SLC30A8 alleles, and (b) within 12 gene sets, including those corresponding to T2D drug targets (p=6.1×10-3) and candidate genes from knockout mice (p=5.2×10-3). Within our study, the strongest T2D rare variant gene-level signals explain at most 25% of the heritability of the strongest common single variant signals, and the rare variant gene-level effect sizes we observe in established T2D drug targets will require 110K-180K sequenced cases to exceed exome-wide significance. To help prioritize genes using associations from current smaller sample sizes, we present a Bayesian framework to recalibrate association p-values as posterior probabilities of association, estimating that reaching p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    6
    Citations
    NaN
    KQI
    []