g-C3N4 Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light Triggered Phototherapy and Multiple Imaging

2016 
Exploring novel photosensitizer (PS) with good stability and high light converting efficiency and designing novel structure to integrate deep penetrating near-infrared (NIR) light excitable up-conversion nanoparticles (UCNPs) and PS into one system are highly fascinating in the photodynamic therapy (PDT) field. In this study, a novel core–shell structured platform (UCNPs@g-C3N4–PEG) with all-in-one “smart” functions for simultaneous photodynamic therapy, photothermal therapy (PTT), and trimodal imaging properties has been rationally designed and fabricated. This system is composed of a core–shell–shell structured NaGdF4:Yb/Tm@NaGdF4:Yb@NaNdF4:Yb up-conversion luminescence (UCL) core and photoactive graphitic-phase carbon nitride (g-C3N4) mesoporous shell closely coated on individual core. This designed structure allows large specific surface area, high loading amount, close proximity to the UCL core, and almost no leakage of g-C3N4 PS, thus ensuring sufficient reactive oxygen species (ROS) to damage tumor...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    112
    Citations
    NaN
    KQI
    []