Reconstruction of IACT events using deep learning techniques with CTLearn

2021 
Arrays of imaging atmospheric Cherenkov telescopes (IACT) are superb instruments to probe the very-high-energy gamma-ray sky. This type of telescope focuses the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays and cosmic rays, onto the camera plane. Then, a fast camera digitizes the longitudinal development of the air shower, recording its spatial, temporal, and calorimetric information. The properties of the primary very-high-energy particle initiating the air shower can then be inferred from those images: the primary particle can be classified as a gamma ray or a cosmic ray and its energy and incoming direction can be estimated. This so-called full-event reconstruction, crucial to the sensitivity of the array to gamma rays, can be assisted by machine learning techniques. We present a deep-learning driven, full-event reconstruction applied to simulated IACT events using CTLearn. CTLearn is a Python package that includes modules for loading and manipulating IACT data and for running deep learning models with TensorFlow, using pixel-wise camera data as input.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    5
    Citations
    NaN
    KQI
    []