ELECTROCHEMICAL Co3O4 NANOPOROUS THIN FILMS SENSOR FOR HYDROGEN PEROXIDE DETECTION

2014 
The nanoporous Co3O4 thin films were prepared on indium tin oxide (ITO) glasses by an electrodeposition method. The surface morphology and composition of the nanoporous Co3O4 films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the as-deposited nanoporous Co3O4 film is constructed by many interconnected nanoflakes with thickness of about 40 nm. The cyclic voltammetry (CV) measurement indicates that the nanoporous Co3O4 films exhibit remarkable electrocatalytic activities for the hydrogen peroxide (H2O2) reduction which shows that it is a good candidate to be employed as electrode materials for electrochemical sensing of H2O2. Further analysis indicated that the detection sensitivity of the sensor was 1.357 mA mM-1 cm-2 and the detection limit was estimated to be about 0.2 mM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    8
    Citations
    NaN
    KQI
    []