Genotype-dependent and non-gradient patterns of RSV gene expression

2019 
Respiratory syncytial virus (RSV) is a nonsegmented negative-strand (NNS) RNA virus and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3’ promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription. However, recent reports show data that appear inconsistent with a gradient. To better understand RSV transcriptional regulation, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and cotton rats infected with virus isolates belonging to four different genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were genotype-specific and non-gradient, where mRNA levels from the G (attachment) gene exceeded those from the more promoter-proximal N (nucleocapsid) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. While the GS signal sequences were highly conserved, their alignment with N protein in the helical ribonucleocapsid, i.e., N-phase, was variable, suggesting polymerase recognition of GS signal conformation affects transcription initiation. The effect of GS N-phase on transcription efficiency was tested using dicistronic minigenomes. Ratios of minigenome gene expression showed a switch-like dependence on N-phase with a period of seven nucleotides. Our results indicate that RSV gene expression is in part sculpted by polymerases that initiate transcription with a probability dependent on GS signal N-phase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []