Porous biochar-supported MnFe2O4 magnetic nanocomposite as an excellent adsorbent for simultaneous and effective removal of organic/inorganic arsenic from water.

2021 
Abstract To solve the problem of organic and inorganic arsenic species contamination in drinking water and/or wastewater, porous biochar-supported MnFe2O4 magnetic nanocomposite (BC-MF) was successfully fabricated and used as an excellent adsorbent for simultaneous removal of p-ASA and As(V) from water environment. This obtained BC-MF displayed remarkable adsorption performance for both p-ASA and As(V) removal at acidic and neutral pH (3−7), and di-anionic and mono-anionic species of p-ASA and As(V) facilitated the adsorption process. Specifically, BC-MF exceeded some reported adsorbents, and the adsorption capacities of p-ASA and As(V) were approximately 105 and 90 mg/g at a 10 μg/L equilibrium concentration. Satisfactory adsorption behavior including adsorption isotherms, competitive ions, humic acid (HA), and regeneration/reusability property in single and binary systems demonstrated the BC-MF can improve the potential application for arsenic-containing wastewater remediation. Proposed adsorption mechanism indicated that electrostatic interaction and surface complexation were involved the p-ASA and As(V) immobilization, whereas hydrogen bonding and π-π interactions may also contribute to the p-ASA removal. Additionally, the prominent sequestration p-ASA and As(V) performance in different water matrix and fixed-bed column studies indicated that BC-MF was a promising nanocomposite for simultaneously removal of organic and inorganic arsenic species in practical wastewater treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    14
    Citations
    NaN
    KQI
    []